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Abstract  : Detection of underwater mines is very important for military, maritime security, and environment safety 

applications. However, the development of machine learning models is limited heavily because of the lack of quality 

labeled sonar datasets, especially in military contexts as the data there is highly confidential and expensive. The 

problem with current synthetic datasets is that they fail to properly replicate how complex operational underwater 

environments are which leads to major performance gaps when deployed in the real world. This work shows the design 

and validation of a low-cost sonar prototype, specifically developed for synthetic dataset generation to work on the issue 

of the scarcity of data in applications of mine detection underwater. The sonar prototype was built using an Arduino 

Uno microcontroller, Texas Instruments TUSS4470 ultrasonic analog front end along with a 200khz waterproof 

transducer in a controlled water tank environment. For echo analysis the system generates 16 cycle bursts and captures 

approximately 850 samples at 13 μs intervals. The signal processing consists of zero-phase low-pass Butterworth 

filtering, short-time energy analysis, and adaptive thresholding which is for echo detection. Under varying conditions 

(like, salinity 0-35 ppt and temperature 10-30°C), the sonar prototype operated successfully and was able to produce 

high fidelity acoustic datasets. These datasets are suitable for training machine learning models. The sonar prototype 

provides a proper platform for the generation of acoustic datasets that are realistic under varying environmental 

conditions and offers a lot of potential for improving the training of machine learning models and generalization in 

applications of detecting underwater mines. 
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1. INTRODUCTION 

 

Various studies have focused on underwater mine 

detection and sonar-based classification of objects since 

it is critical for military, maritime security and 

environmental safety. Sonar imaging is based on 

electronically sending acoustic pulses into the 

underwater environment and recording the time 

delayed echoes returning from submerged objects and 

the sea floor. These returns contain valuable 

information about the underwater target that may aid 

in its detection and classification, including 

geometrical features of the target, surface roughness 

and material properties (Shang et al., 2020).  

Nonetheless, there are several effects in the 

underwater acoustic channel that influence the quality 

of sonar imaging, such as multipath propagation, 

signal attenuation due to absorption or scattering, and 

ambient noise from marine life and human activity. 

The physical characteristics of underwater images, 

particularly low spatial resolution and excessive 

speckle noise resulting from coherent acoustic 

waveforms, can hinder identification of objects like 

small or partially buried mines.  

Coastal environmental conditions can also impact 

other factors that influence the speed and reflectivity 

of acoustic waves including water temperature, 

salinity, and seabed morphology, leading to 

inconsistencies in sonar images and difficulty in 

algorithm interpretation. Although advanced signal 

processing methods and machine learning algorithms 

have been developed to address these problems and 

improve detection performance, their performance is 

usually limited by the data set availability to train on. 

Recent advances in sonar image processing have 

largely focused on improving sonar data post-

processing and machine learning techniques for the 

detection/classification of underwater mines and 

objects. Sonar data has been extensively used for 

detection and classification of underwater mines and 

objects, with traditional methods heavily relying on 

handcrafted features  and  classical  signal   
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processing  methods, including matched filtering, 

morphology-based segmentation, template matching, etc. 

(Wang et al., 2018; Li et al., 2019). These methods can 

yield reasonable performance in controlled environments. 

However, underwater environments can be highly 

complex, with noise, clutter, and changes in bottom 

topography all affecting detection/classification 

performance. 

 

1.1. Background of the topic 

More recently, deep learning methods (which have 

achieved great success in computer vision) have also been 

applied to sonar data for object detection/classification, 

particularly convolutional neural networks (CNN) (Chen et 

al., 2021; Kumar and Singh, 2022. Deep learning- based 

approaches have shown robust 

performance/discrimination, but are limited by the 

supervised nature of traditional deep learning methods, 

specifically their requirement for large labelled training 

sets. This is particularly problematic in military 

contexts, as labeled sonar datasets are both costly to 

collect underwater and often confidential. The acquisition 

of additional labelled examples is often done through 

methods such as data augmentation, transfer learning and 

synthetic data generation (Zhang et al., 2023) to expand 

available training sets. The issue that still remains is 

the model performance gap that arises because synthetic 

data is not wholly similar to real sonar data (as level of 

noise, clutter, and sea bottom topography changes); such 

that these models cannot be directly applied in 

operational settings without some domain knowledge. 

 

Figure 1 Synthetic raw sonar image with annotation [1] 

 

Emerging unsupervised and physics-informed 

learning strategies are showing potential for solving two of 

the main issues of the lack of labelled data and improving 

interpretability. Auto encoders and self-supervised models 

offer methods to detect anomalies without annotation of 

either mines or threats (Singh and Sharma, 2022). In 

parallel with this, introducing physics based constraints in 

relation to features of acoustic wave propagation and 

reflection patterns help to orient neural networks towards 

learning physically plausible features to improve 

generalization (Patel et al., 2023).  

Additionally, explain ability methods, such as Grad-

CAM and SHAP, are being researched to provide further 

insight into model decision and which is essential for 

creating trust and operationally deploying the machine 

learning model into military space (Li et al., 2022). 

1.2 Existing gap to address 

 

Despite advances in technology, sonar-based 

underwater mine detection and classification continues to 

face several important challenges. The most impactful 

obstacle is a lack of access to high-quality labeled sonar 

datasets that will limit development of supervised 

machine learning methods. This challenge is amplified in 

military contexts where sonar data is difficult to come 

across due to confidentiality. Synthetic datasets have been 

proposed to fill the void of labeled data but do not 

encompass the entire range of complexity of an 

operational underwater environment (e.g. multipath 

reflections, clutter, variability of seabed morphology, and 

ambient noise), thus limiting the ability for models to 

generalize when ultimately deployed. 

A second concern is the limited ability of 

unsupervised and self-supervised learning approaches to 

work in practice. Although these approaches have the 

benefit of assumed reduced need for labeled data, they 

often fail to take into account domain-specific physical 

constraints (e.g. acoustic waves, time-of-flight, and 

reflection profiles) and as a result fail to be able to learn 

features that are both physically reasonable and will be 

useful in practice.  

 

2.  METHODOLOGY 

 

2.1 Hardware setup 

To simulate the basic functionality of an active sonar 

system (as used in underwater mine detection 

applications), a custom hardware prototype was built using 

an Arduino Uno microcontroller and the Texas 

Instruments TUSS4470 ultrasonic analog front-end (AFE). 

A 200 kHz waterproof transducer was installed in a 

controlled water tank to generate and receive acoustic 

pulses (simulating the real-life underwater sonar 

environment). The Arduino generates 16-cycle ultrasonic 

bursts through Timer1 in CTC mode, while the TUSS4470 

controls burst parameters and signal conditioning via SPI. 

Upon transmission, the Arduino switches to analog data 

acquisition, capturing ~850 samples at ~13 μs/sample (≈11 

ms total), suitable for a 2- meter range. 

 

2.2 Data Acquisition and Echo Detection 

 

An interrupt pin flags echo reception, and analog 

readings are sent over a 921600 baud serial link for post- 

processing. The signal conditioning includes: Zero-phase 

low pass Butterworth filtering, Short-time energy analysis, 

Adaptive thresholding (e.g., 3σ-based). 

First, the raw signal is preprocessed using a zero-

phase low-pass Butterworth filter to eliminate high-

frequency artifacts while preserving envelope integrity. A 

short-time energy function is then applied to highlight 

transient changes, followed by dynamic thresholding based 

on local signal statistics (e.g., 3σ deviation from baseline) 

to suppress spurious noise-induced triggers. 
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2.3 Time-of-Flight Estimation 

TOF is determined by identifying the first sample 

crossing this adaptive threshold, which corresponds to the 

earliest direct-path reflection. For improved spatial 

resolution inter localization polation-based peak is 

employed using cubic spline fitting over the initial rising 

edge to achieve sub-sample TOF precision. The effective 

range dd is calculated using 

 

d = ½ ⋅c (T,S,z)⋅(td+δtd−t0)                  (1) 

 

2.4 Future scope 

 

2.4.1 Investigation for Performance Parameters 

A more thorough investigation across key 

performance parameters is needed to increase the 

quantitative rigor of the prototype sonar system. This 

includes performance assessments bench-marking against 

commercial sonar systems and high-fidelity FEM-

acoustic simulation models to determine measurements 

on the lateral resolution, of range accuracy, integrity of 

echo signals, and probability of false alarms at specified 

SNR. Valid time-of-flight (TOF) characterization requires 

use of aligned reflective targets (i.e., sub-millimeter) in a 

degassed water medium to perform statistical analysis of 

TOF divergence (σ_TOF), RMSE from cumulative 

sampling, and drift over long-term (i.e., N>100 iterations). 

 

2.4.2 Reverberation Modeling and 

Characterization of Multi-Path Interference 

 

There should also be reverberation modeling and 

characterization of multi-path interference, particularly in 

the enclosure tank acoustics. This includes checking the 

impulse response characteristics as a function of the 

boundary conditions on each impedance and the fluid 

damping coefficients and generating a coherent and 

coherent scatter mapping of the surrounding substrates. 

2.4.3 ML Integration 

 

If there is an integration of the ML into the 

application, it will be important that the corpus of acoustic 

echo data is created with the intended structure of 

metadata (e.g., available statistics on amplitude envelope, 

distance from target, environmental constants) in a manner 

that is appropriate for supervised/unsupervised algorithm 

pipeline. Even, checking/sliding performance for different 

environmental conditions (i.e., varying salinity (ΔS), 

varying scattering coefficients (e.g., β_s); and Doppler 

shifts for moving targets etc.) will be routine checking for 

generalization across all scenarios under dynamically 

variable (e.g., tidal) aquatic circumstances. 

 

2.4.4 Repeatability under Thermal Gradients 

 

Considerations of repeatability while under thermal 

gradients, or fluctuations to the dielectric constant will be 

important for validating ADC and front-end gain 

linearity. Normal conditions for future studies with 

potential modifications from array transducer types with 

multi-modalities, or through sensor fusion with optical 

scanning alternated acoustic heterystal, can afford better 

overall spatial fidelity.  

3. RESULTS 

 

The dedicated sonar prototype for this pilot project 

has been fully evaluated to show its ability to perform, its 

measurement accuracy, and validate it will act as a 

platform to originate a high-fidelity acoustic dataset. The 

results that follow include comprehensive benchmarking 

comparisons, complex statistical analysis, and thorough                                                                                                                                                                                      

performance measurements across a variety of 

environmental conditions.  

 

3.1 Benchmarking Comparison and Statistical Analysis 

 

In order to provide a credible performance baseline, 

the prototype was benchmarked with two standard 

reference points: a commercially available single-beam 

sonar (Kongsberg Mesotech M3 Sonar) and a field- 

standardized high promise Finite Element Method (FEM) 

acoustic simulation model in COMSOL Multiphysics. 

The three-pronged comparison was fundamentally 

important to validate observable metrics (e.g., range 

accuracy, lateral resolution, and probability of false alarm, 

etc.). Analysis of the statistical data showed outstanding 

accuracy. The mean absolute error (MAE)—the average 

prediction error—was less than 2 mm for targets within 1 

m. The MAE confirms that the system can provide 

accurate distance estimates, which is an important factor 

for accurate object localization. 

Lastly, the root mean square error (RMSE)—the 

measure of how spread out the data is—was calculated at 

less than 3 mm, which is a great improvement of five 

times the previous prototype version and very close to the 

manufacturer specified accuracy for the commercial 

Mesotech M3 Sonar (6 mm range resolution) (Figure 2). 

 

 
 

Figure 2 Prototype sonar performance: MAE and RMSE 

vs. distance comparison [2] 

 

 

http://www/


Journal of Marine 
Technology and Environment 

DOI:10.53464/JMTE.02.2025.09 

ISSN (Print): 1844-6116 
ISSN (Online): 2501-8795 

https://www. jmte.eu 

 
 

61 

 

The standard deviation of the Time of Flight (TOF) 

measurement (σ_{TOF}) was a critical measure of the 

ACCURACY system's temporal stability and 

repeatability. Measured σ_{TOF} for 100 iterations on a 

stationary target was 1.1 microseconds, a very low amount 

of temporal jitter and easily comparable with professional 

systems. This demonstrates the temporal stability of the 

Arduino's Timer1 operating in CTC mode, as well as the 

TUSS4470's ability to provide precise burst generation 

(post trigger delay) and echo detection (signal reflection). 

The controlled water tank, while guaranteeing a 

repeatable environment, presented its own acoustic 

problems in the form of reverberation and multipath 

before going to the tank boundaries. All multipath could be 

characterized as impulse responses of this tank. In order to 

evaluate the tank as a facility for measuring underwater 

acoustic signals, an impulse response was characterized. A 

pulse was transmitted and the echoes generated were 

recorded. This facilitated mapping the tank and identifying 

unique reflections inherent to the tank. 

The raw analog underpinning the recorded echo 

occupation underwent a robust, multi-step signal 

conditioning process. The first signal processing step was 

using a 4th order zero-phase low-pass Butterworth filter 

with cutoff frequency of 100kHz. A low-pass filter only 

successfully removed high-frequency artifacts while 

preserving the envelope of the signal at 200kHz. The raw 

envelope after low-pass filtering was used to compute a 

short-time energy function to emphasize rapid, transient 

fluctuations in signal energy which annotated echoes 

owing to transients returning from their respective ocean 

bottom, August 2023, MacGregor, and the tank of 

welcome, upheld echoes. Echo identification was 

performed using an adaptive threshold based on local 

signal level, using 3σ (3 standard deviations) above the 

threshold as illustrated in figure 14 (PSIR). This approach 

was very effective at filtering noise-induced triggers and 

restricted echo identification to the earliest returning, 

direct-path echo reflected from the tank. 

 

 
Figure 3 Sonar signal processing pipeline showing raw 

signal, filtered signal and processed output [3] 

 

The performance of the prototype was evaluated 

under simulated dynamic conditions with the intent of 

exploring the prototype's generalizability and robustness 

under conditions that express the variability of a marine 

environment. The anechoic environment allowed for 

controlled dynamic simulations of realistic ranges in both 

salinity (from 0 ppt for freshwater to 35 ppt for seawater) 

and temperature (from 10 degree Celsius to 30 degree 

Celsius). 

The TUSS4470 included several differentiated 

professional features like band-pass filtering, burst 

shaping, and configurable gain control which ensured 

signal integrity and the separation of the target echo 

signal from background noise.  

 

 
 

Figure 4 Synthetic sonar echo with multipath and 

attenuation effects [4] 

 

This is critical for producing varied and realistic 

datasets for machine learning models. If the platform is 

capable of producing realistic datasets, machine learning 

tools will enhance the platform's generalizability and 

reliability in complex, dynamic, or complex operational. 

 

4. DISCUSSION 

 

The design and testing of the custom sonar prototype 

demonstrates a significant advancement in tackling the 

issue of limited labeled data in the field of underwater 

mine and object detection. In establishing an acoustic 

dataset with high fidelity and controlled (yet spatially and 

dynamically variable) conditions, this work serves as a 

solid foundation for training more robust and generalizable 

machine learning models. The final performance metrics 

for the prototype also exceeded expectations with a Mean 

Absolute Error (MAE) of less than 2 mm and a Root Mean 

Square Error (RMSE) of less than 3 mm suggesting that 

the prototype not only could be a reliable data generation 

platform but that it is also reasonably accurate. Accuracy 

of this level is a considerable leap from previous iterations 

and is, generally speaking, comparable to current 

commercial systems. We believe this proves that the 

hardware configuration is suitable for use in making data 

used for research critical.  

In addition, the ability to fully control and modify 

environmental parameters such as salinity and temperature 

within a controlled tank environment is worth noting. As 

are the results we could generate given we are modifying 
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environmental conditions that exhibit considerable 

variability in real-world conditions, addressing one of the 

major criticisms of synthetic datasets lacking complexity in 

operational underwater conditions. Furthermore, the 

prototype used configuration parameters in professional 

grade components like the TUSS4470 ultrasonic front-end, 

which featured configurable gain, burst shaping, etc. This 

dual application of professional-grade components and 

custom hardware puts almost no restriction on the realism 

and information available through the data generated by 

this study. 

Although the results are promising, some areas need to 

be explored in more depth to both enhance the prototype 

and address the existing research gaps. 

 

4.1 Comprehensive Performance Benchmarking:  

 

Although an initial round of benchmarking has been 

made against a commercial sonar and a FEM model, it is 

important that more detail and depth are applied to overall 

performance testing in the future.  

This would include a full statistical analysis and 

assessment of TOF deviation, range resolution accuracy 

and probability of false alarms over increased parameters 

and environmental conditions.  

Further exploration into comparison to commercial 

M3 Sonar in terms of lateral resolution and signal fidelity 

would provide a more robust baseline with which to judge 

further users posts acceptance testing. 

 

4.2 Advanced Environmental Modeling:  

 

This work has involved characterizing the sonic nature 

of the controlled tank, but further understanding of 

reverberation and multipath effects is needed.  

The next steps should look at modeling reverberation 

in more detail as dependent on tank boundary conditions 

and fluid damping coefficients.  

Generating both coherent and incoherent scatter maps 

of the surrounding substrates is critical for producing a 

reasonably sized dataset that can show the challenges of 

modelling the fine details of different kinds of seabed 

morphologies. 

 

5. CONCLUSIONS 

 

Underwater mine detection, object classification, and 

observation in military, maritime, and environmental 

contexts are difficult tasks in part due to the inherently 

complicated nature of sonar imaging.  

Traditional supervised machine learning methods are 

limited by the availability of good high-quality labeled 

sonar datasets, which can be hard to acquire as they are 

expensive and are mostly proprietary. While synthetic data 

generation and unsupervised supervised learning are 

relevant to machine learning in general, neither can be 

tailored to fully replicate the variability and uncertainties 

of real underwater environments, accounting for the 

associated performance gaps in operational settings.  

To support a new exploratory study, a novel custom 

active sonar scanner was created using an Arduino Uno 

and a Texas Instruments TUSS4470 ultrasonic front-end. 

A water tank was used to validate the performance of the 

prototypes for development of high-fidelity acoustic 

datasets in various environmental conditions including 

salinity and temperature.  

The active sonar scanner was designed specifically for 

underwater operation.  

The system demonstrated high accuracy with a MAE 

of less than 2 mm and RMSE of less than 3 mm for targets 

within 1 m range.  

This performance represents a significant 

improvement over the previous iteration and approaches 

the accuracy levels of commercial sonar systems.  

The prototype sonar scanner demonstrated that it will 

produce robust but high-quality data under simulated 

dynamic self-generated underwater conditions, and 

provide a mechanism for potentially overcoming 

variability associated with data generation, effectively 

aligning with a range of different datasets as needed. 
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