THE STUDY OF A JIB CRANE FROM A CARGO SHIP

Milis Nilgun Caibula

1Politehnica University of Bucharest, Splaiul Independentei 313 street, 060042, Bucuresti, Romania, e-mail address: caibulamilis@yahoo.com

Abstract: This paper presents the study of a jib crane from a general cargo ship. There are numerous different types of vessels operating today in the various markets worldwide. Besides, thousands of cargo vessel ply the world’s oceans and seas each year, handling the bulk of international trade. The cranes from cargo ship is required to be adequate stability and strength for each load. All cranes from vessel are mounted on deck of the ship. Having regard in particular to the stress induced at its mounting or fixing points, adequately ballasted, securely anchored and supported by outriggers as necessary to ensure its stability when lifting. A jib from a crane from cargo ship is a type of overhead lifting device that is often used in a smaller work cell area for repetitive and unique lifting tasks. The extreme values of the stresses and reaction forces are determined by the finite element method. In this manuscript, the design of the cargo ship and the study of a jib crane are made using NX software from Siemens.

Key words: jib, crane, ship, cargo, stress.

1. INTRODUCTION

A general cargo ships is a freighter is a merchant vessel that carries goods from one harbor to another. The most used cargo vessels are, [1]:

- Bulk-cargo ship.
- Container cargo (boxship)
- Livestock vessels
- Reefer ship.

Figure 1 General cargo ship

Some cargo ships are equipped with cranes and other mechanisms to load and unload, Fig. 1. Cargo ships are generally classified according to: deadweight tonnage (DWT), cargo capacity and vessel dimensions. In fact, the vessel presented in the paper is small in size (carrier of 22,000 TDW), [2]. General cargo ships generally have a life expectancy of 25 to 30 years before being scrapped.

Figure 2 Crane cargo vessel

Often, the main parts of the crane on the ship are: pedestal, column (main support), cabin, jib, etc. [3] Usually, the cabin is attached to the column of the crane. Because, the operator working in the cabin must have a higher visibility. But, the jib crane is above the body and the cabin. The jib crane is raised with two hydraulic cylinders, Fig. 3.

Figure 3 Crane hydraulic cylinders
Moreover furthermore, there are many types of ship crane. Usually, the ship crane are more complex to lift or lower a heavier load, Fig. 4.

![Ship crane](image)

Figure 4 Ship crane

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jib head</td>
</tr>
<tr>
<td>2</td>
<td>Jib head sheaves</td>
</tr>
<tr>
<td>3</td>
<td>Luffing sheaves</td>
</tr>
<tr>
<td>4</td>
<td>Main chords of jib</td>
</tr>
<tr>
<td>5</td>
<td>Cargo hoist ropes</td>
</tr>
<tr>
<td>6</td>
<td>Transverses</td>
</tr>
<tr>
<td>7</td>
<td>Luffing ropes</td>
</tr>
<tr>
<td>8</td>
<td>Hook block</td>
</tr>
<tr>
<td>9</td>
<td>Slew column head</td>
</tr>
<tr>
<td>10</td>
<td>Jib stop</td>
</tr>
<tr>
<td>11</td>
<td>Hook</td>
</tr>
<tr>
<td>12</td>
<td>Slewing column</td>
</tr>
<tr>
<td>13</td>
<td>Machinery deck</td>
</tr>
<tr>
<td>14</td>
<td>Jib heel</td>
</tr>
<tr>
<td>15</td>
<td>Jib heel pin</td>
</tr>
<tr>
<td>16</td>
<td>Slew ring bearing</td>
</tr>
<tr>
<td>17</td>
<td>Slew ring bolts</td>
</tr>
<tr>
<td>18</td>
<td>Pedestal</td>
</tr>
</tbody>
</table>

Table 1. The components of a ship crane

Jib crane from cargo vessel has the following motions:
- Derricking/luffing motion.
- Hoisting motion.
Slewing column with jib has slewing motion.

![Jib crane motions](image)

Figure 5 Jib crane motions

2. **THE STUDY OF A JIB CRANE**

A jib is a horizontal or nearly horizontal beam used on cargo ship cranes. In fact, these frames are used in many types of cranes to support the load away from the main support. The beam of the cranes are primary used to transport, lower loads and lift, Figure 4. On the jib are mounted: trolley, hook block, hoist wire rope, etc, [4].

![Crane hydraulic cylinders](image)

Figure 6 Crane hydraulic cylinders

The study of crane frame is performed using the finite element method. Thus, creating a mesh model with 1069 type CTETRA(10) finite elements, [5].
The maximum shear stress $\tau_{\text{max}} = 191.383$ MPa is at node 1205 in the finite element 823. But the minimum shear stress $\tau_{\text{min}} = 0.017$ MPa is at node 1024 in the finite element 420, Fig. 7.

In order to achieve the diagram of shear stresses, we must choose the most important nodes. From the diagram, it can be seen that all the values of the shear stresses are positive. Thus, in the diagram the minimum shear stress is $\tau_{\text{min}} = 0.017$ MPa and the maximum shear stress is $\tau_{\text{max}} = 191.383$ MPa, Fig. 8.

At node 2408 of element 823 is the minimum normal stress $\sigma_{\text{min}} = -211.749$ MPa, [6]. But, at the 2010 node in element 224 is the maximum normal stress $\sigma_{\text{max}} = 166.247$ MPa, Fig. 9.

In the normal stresses diagram, the extreme values are: minimum normal stress is $\sigma_{\text{min}}' = -211.749$ MPa and the maximum normal stress is $\sigma_{\text{max}}' = 220$ MPa, Fig. 10.

The maximum von Mises stress $\sigma_v_{\text{max}} = 381.287$ MPa is at node 1205 from element 823, [7]. But, the minimum von Mises stress in this case is $\sigma_v_{\text{min}} = 0.030$ MPa which is located at the node 1024 from element 420, Fig. 11.
All values in the von Mises stresses diagram are positive. In the diagram the extreme values of the Mises stresses are: the minimum stress is \(\sigma_{v \text{ min}} = 0 \) MPa and the maximum stress is \(\sigma_{v \text{ max}} = 300 \) MPa, Fig. 12.

![Figure 13 Von Mises stress – Jib crane](image)

The maximum reaction force \(F_{\text{max}} = 1.835 \times 10^6 \) N is in the node 2203.

However, the minimum reaction force \(F_{\text{min}} = 0 \) N is in the node 2410, Fig. 13.

![Figure 14 Diagram of reaction force](image)

In the diagram of reaction forces, most values are null, [7]. Only at the beginning of the chart is there a maximum value \(F_{\text{max}}' = 1.9 \times 10^6 \) N, Fig. 14.

3. CONCLUSIONS

The jib cranes of cargo vessels have a relatively simple design and structure. They are easier to control and don’t require a lot of servicing.

On the cargo ship, the jib can be deformed in the following cases: great winds, storm, during loading/unloading of goods, etc.

Authorized repairs should only be carried out on shipyards by specialized crane personnel. They must repairs to crane jibs by cropping and welding inserts over damaged or wasted sections. Because, the jib crane are made of high-tensile for which special procedure have to be observed during repairs.

On general cargo ships, it was reported that the ship’s staff had carried out unauthorized repairs to crane frame by cropping and welding sections. In fact, any damage noticed to crane jibs must be reported to the general cargo vessel and also advice sought before carrying out any kind of repair. It is recommended that during the maintenance of the cargo vessel, the strength structure of jib crane be checked.

In the paper, extreme values were determined from a jib crane with finite element methods. These extreme values are of the shear stresses, normal stresses, von Mises stresses and reaction forces.

On the future, we want to develop the study for the jib from a crane on other ships.

4. REFERENCES

